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ABSTRACT: Alkoxy radicals have long been known to enable remote C−H functionalization via 1,5-hydrogen atom abstraction.
However, methods for their generation traditionally have relied upon highly oxidizing metals, ultraviolet radiation, or preformed
peroxide intermediates, which has prevented the development of many desirable transformations. Herein we report a new bench-
stable precursor that decomposes to free alkoxy radicals via a previously unreported single-electron oxidation pathway. This new
precursor enables the fluorination and chlorination of remote C−H bonds under exceptionally mild conditions with exceedingly high
monoselectivity. Iterative use of this precursor enables the introduction of a second halogen atom, granting access to remote dihalide
motifs, including CF2 and CFCl.

The development of new chemical reactions to function-
alize inert C−H bonds holds great promise in organic

chemistry. Directed metalation has been extensively exploited
to functionalize sp3 C−H bonds in the past decade.1−3

However, this process remains largely limited to C−H bonds
that are three bonds away from the directing atom because of
the preferential formation of five-membered metallacycles.
While the development of ligands and directing groups to favor
more distal C−H palladation has been recently demonstrated,4

heteroatom-centered free radicals provide a potentially power-
ful alternative means to access these more remote C−H bonds
via the process of 1,5-hydrogen atom transfer (HAT),5 the
Hofmann−Löffler−Freytag and Barton nitrite ester reactions
being early examples of such reactions.
In light of our lab’s previous efforts in remote radical C−H

halogenation reactions via nitrogen-centered radicals,6,7 we
became interested in using alkoxy radicals to accomplish the
remote C−H halogenation of alcohols. Hydrogen atom
transfer reactions of alkoxy radicals to produce remotely
functionalized alcohols are particularly desirable because of the
prevalence of alcohols in natural products and drug targets.
However, existing methods to accomplish the remote
halogenation of alcohols pose practical limitations (Scheme
1A),8−12 since alkoxy radicals are typically generated using
stoichiometric organotin13 or lead14 reagents, hypervalent
iodine,15 or unstable precursors,8−12 which are often not
compatible with a variety of desirable transformations.
In this context, photoredox chemistry has furnished new

means to generate heteroatom-centered radical intermediates
from a range of convenient synthetic precursors.16−18 These
precursors undergo either a one-electron oxidation or
reduction in the presence of a photoredox catalyst and
subsequently decompose to yield the heteroatom-centered
radical. In our efforts to develop alcohol-directed δ-C−H
halogenation, several examples of visible-light-mediated alkoxy
radical generation caught our attention.18−26 However, since
common electrophilic halogenation reagents such as Select-
fluor and N-chlorosuccinimide (NCS) are quenched by single-

electron reduction following halogen atom transfer, many of
the previously reported alkoxy radical precursors, which
decompose by single-electron reduction (e.g., N-alkoxyphtha-
limides19−21 and N-alkoxypyridinium salts22,25,26), are unsuit-
able for a redox-neutral cycle. Thus, for a redox-neutral
photoredox cycle to be feasible with the desired halogenation
reagents, the alkoxy radical must be generated via single-
electron oxidation of the precursor. In certain cases, oxidative
pathways have been used to directly generate alkoxy radicals
from free alcohols using either cerium catalysis23 or proton-
coupled electron transfer (PCET);27,28 however, the narrow
redox window of these cerium catalysts has limited their
application to new transformations, while 1,5-HAT reactions of
PCET-generated alkoxy radicals remain unreported. In order
to overcome these limitations, we embarked on the develop-
ment of a new alkoxy radical precursor with appropriate redox
properties to enable remote alcohol C−H halogenation.
Therefore, drawing inspiration from previously reported

decarboxylating precursors designed for nitrogen-centered
radical HAT,29,30 we questioned whether the alcohol-derived
oxyimino acid directing group 1 recently reported by our lab4

for palladium-catalyzed C−H activation might serve as the
required alkoxy radical precursor. One-electron oxidation of
the deprotonated directing group could initiate a decarbox-
ylative sequence to yield carbon dioxide, acetonitrile, and an
alkoxy radical competent for hydrogen atom abstraction
(Scheme 1B31). Moreover, this directing group is easily
prepared in a one-step condensation from the corresponding
hydroxylamine using pyruvic acid, an inexpensive natural
product.
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To accomplish this oxidation, we tested a range of
photocatalysts possessing different excited-state redox poten-
tials using irradiation with 467 nm light. When Selectfluor was
used as a radical trapping reagent,30,32,33 imino acid 1i
underwent decarboxylation and intramolecular HAT to
provide a remotely generated carbon radical that was trapped
to forge a carbon−fluorine bond. The choice of base was
crucial to the success of this reaction, with a combination of
cesium fluoride and cesium carbonate providing the product 2i
in 67% yield (see the Supporting Information (SI) for
details)we attribute the effectiveness of this base combina-
tion to fine-tuning of the pH of the reaction in the acetonitrile/
water mixed solvent system. Notably, the organic photo-
sens i t izer (4s ,6s)-2 ,4 ,5 ,6- tetra(9H -carbazol -9-y l)-
isophthalonitrile (4CzIPN)34 could supplant the expensive

iridium complexes typically reported for decarboxylation
reactions.33 Control experiments conducted in the absence of
photocatalyst and in the absence of light concluded that both
light and the photocatalyst were crucial to the reaction’s
success.
Building on the success of this fluorination reaction, we

questioned whether remote C−H chlorination might also be
achieved. With NCS as the chlorine atom source and cesium
carbonate as the base in acetonitrile as solvent, the desired
remotely chlorinated product 3i was obtained in 22% yield.
Switching to ethyl trichloroacetate (ETCA) as the chlorine
atom source, as recently disclosed by Reisman,35 improved the
yield to 63%.
We then proceeded to test the scope of these halogenation

reactions with respect to both fluorination (Scheme 2) and

chlorination (Scheme 3). In order to reduce the volatility and
ease the purification of the products, many of the resulting
alcohol products were derivatized to carbamates using 4-
nitrophenyl isocyanate. Methylene and methine C−H bonds
could be halogenated in moderate to good yields among a
range of substrates bearing heterocycles (2h, 2i, 2o, 2q, 3h, 3i,
3o, 3q), azides (2g, 3g), phenolic ethers (2p, 3p) and nearby
benzylic C−H bonds (2c, 2d, 3c, 3d). The natural product
derivatives tetrahydrogeraniol (2f, 3f), norbornane (2k, 3k),
and 2-methylvaleric acid (2n, 3n) were all amenable to this
halogenation procedure. Because of the propensity of

Scheme 1

Scheme 2. Scope of the δ-Fluorination Reactiona

aAll of the reactions were carried out on a 0.2 mmol scale. All of the
yields reported are isolated yields. R′ = H or PG. PG = CONH(p-
NO2)C6H4. Certain products were isolated in the presence of another
regioisomer: 2b (95:5), 2c (88:12), 2d (95:5), 2e (97:3), 2f (91:9),
2g (95:5), 2h (95:5), 2i (97:3), 2o (96:4), 2p (95:5), 2q (99:1), and
2s (97:3). Trace difluorinated product was observed in nearly all cases
(see the SI for further details).
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Selectfluor to react with unsaturated systems, olefin- (3u) and
alkyne-containing (3v) substrates were successful only for
chlorination. In certain substrates, minor amounts of alternate
regioisomers were observed, and control experiments (see the
SI) indicated that these regioisomers arose mainly from 1,6-
HAT as opposed to nondirected C−H abstraction processes.
To test the scalability of our protocol, we attempted the

remote fluorination reaction using 1 g of azide-containing
starting material 1g. This reaction proceeded smoothly,
providing the fluorinated azido alcohol in 61% isolated yield
in only 15 min (see the SI for the procedure). This process is
particularly attractive since the oxyimino acid precursor is
bench-stable for months and thermally stable up to 100 °C and
requires no transition metal catalysts for radical generation.
Moreover, this protocol uses Selectfluor, one of the cheapest
and most easily handled electrophilic fluorine sources.36

Given the power of this methodology for site-selective
monohalogenation, we questioned whether reinstallation of the
oxyimino acid directing group might enable the remote C−H
halogenation reaction to be performed a second time to form
valuable dihalogenated methylene groups. Difluoromethylene
groups, known for their isosteric and isopolar relationship to
oxygen, have played an important role in devising more potent
protease inhibitors37 and nucleoside analogues.38 Difluoro-
methylene groups are typically formed by reacting deoxy-
fluorination reagents such as (diethylamino)sulfur trifluoride
(DAST) with preinstalled ketones. In view of the hazards
associated with aminosulfuranes and the requirements of
cryogenic temperatures and long reaction times, other methods
to incorporate difluoromethylene groups are highly

sought.39−41 By the use of our fluorination methodology, it
was possible to install difluoromethylene groups at remote
positions in moderate yields (Scheme 4).

This dihalogenation strategy could also be extended to
generate chlorofluoromethylene groups, albeit in lower yields
(Scheme 4). Aliphatic chlorofluoromethylene groups are
typically encountered in refrigerants and fire retardants.
While methods to introduce the chlorofluoromethylene
group into complex molecules as part of a cyclopropane ring
through additions of chlorofluorocarbene to olefins are well-
established,42 acyclic chlorofluoromethylene groups are
typically synthesized as mixtures of regioisomers using
elemental halogens,43 making their selective introduction to
complex molecules extremely difficult. To our knowledge, our
strategy is the first method for the regioselective introduction
of the chlorofluoromethylene motif into unfunctionalized
aliphatic chains.
The stark differences in the times required for the

fluorination and chlorination reactions led us to investigate
the reaction mechanism. Suspecting that a radical chain might
be in operation in the fluorination reaction,44 we measured the
quantum yields of the two reactions (Scheme 5A) as Φ =
0.070 for the C−H fluorination and Φ = 0.016 for the C−H

Scheme 3. Scope of the δ-Chlorination Reactiona

aAll of the reactions were carried out on a 0.2 mmol scale. All of the
yields reported are isolated yields. ETCA = ethyl trichloroacetate. R′
= H or PG. PG = CONH(p-NO2)C6H4. 3d was isolated in the
presence of another regioisomer (94:6). 3q was isolated in the
presence of a product with eliminated chlorine (14 mol%).

Scheme 4. Scope of the Dihalogenation Reactionsa

aAll of the reactions were carried out on at least a 0.1 mmol scale.
ETCA = ethyl trichloroacetate. R′ = H or PG. PG = CONH(p-
NO2)C6H4. All of the substrates were isolated as inseparable mixtures
with their monofluorinated analogues (X = H). Certain products were
isolated as regioisomers: 5c (96:4), 5f (98:2), and 6c (99:1). Yields of
the stated products were estimated using either 1H or 19F NMR
analysis of the isolated mixtures. Reaction conditions: X = F: 4CzIPN
(1 mol %), CsF (2.20 equiv), Cs2CO3 (0.5 equiv), Selectfluor (2.0
equiv), MeCN/H2O (0.05 M, 4:1), 467 nm hν, 10 min, 40 °C, argon
atmosphere; (ArNCO, catalyst, r.t., 12−18 h). X = Cl: 4CzIPN (3
mol %), Cs2CO3 (1.1 equiv), ETCA (2.0 equiv), MeCN (0.05 M),
467 nm hν, 18 h, 40 °C, argon atmosphere; (ArNCO, catalyst, r.t.,
12−18 h).

Scheme 5. Mechanistic Studies
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chlorination. Although these results are inconclusive evidence
for a radical chain in either reaction, they do show that despite
a lower photocatalyst loading, the remote C−H fluorination
reaction is photochemically a more efficient process than the
C−H chlorination.
We also compared the rates of quenching of the carbon-

centered radical from 1,5-HAT through radical clock experi-
ments45 (Scheme 5B). Using a neophyl-type substrate as the
clock,46 we found that the rate of quenching for the carbon-
centered radical was over 53 times higher in the fluorination
reaction than in the chlorination reaction. Taken together with
the quantum yield measurements, these mechanistic results
may help justify the large discrepancy in the times required for
these reactions.
In summary, we have developed a new precursor to access

alkoxy radicals via photoredox catalysis. By the use of these
alkoxy radicals, remote carbon radicals generated by hydrogen
atom transfer may be quenched with fluorinating and
chlorinating reagents to forge new carbon−halogen bonds.
By reinstallation of this directing group, valuable dihalo-
methylene groups may be generated at remote positions in the
molecule. We expect that this new radical precursor will enable
a diverse range of new transformations to be developed, both
by expansion of the remote C−H transformations reported
herein and by taking advantage of the other reaction modes of
alkoxy radicals, including β-scission and addition across
unsaturated bonds.
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Steroide Und Sexualhormone. 211. Mitteilung. Direkte Einführung
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